JASH PHOTOGRAPHY

Wednesday, May 12, 2010

Future Nano Mobiles


Since Nokia launched the world's first mobile in1984, the 9.8 kg Mobira Talkman, mobile phones have got smaller, lighter and smarter.
Each new year sees new developments, more features, and smaller and lighter models.
Now they weight less than 100gm and are web-enabled, can send and receive emails, provide high quality photos and videos, stream videos and music, and respond to voice commands.
4G and 5G mobile phones
So what's next from the amazing mobile phone? Nokia asked design students to suggest the phone in five years time when 4G and even 5G would be available.

The winning design was a candy bar-style device, which swivels to sit in a freestanding right angle to make video calls more comfortable.
The compact handset also includes a trackball, enabling it to act like a mouse. And when not in use for calls or web surfing, the phone doubles, or is that triples, as a picture frame.
How about a phone the size of a credit card, designed to be worn around the neck?
Or an environmentally-friendly model, that after analysing its user's day-to-day carbon footprint, rewards the climate conscious owner with free calls and texts.
Another necklace phone has beads representing different contacts. Squeeze the bead to ring that person. Another model could be worn as a ring.
Mobiles that double as sunglasses could appeal - so long as you're not the type to keep losing your favourite pair!
Fancy some aromatherapy? The Scentsory is a phone that folds like origami into an envelope shape and allows you to share scents and ambient lighting with your contacts.
Of course you won't need to throw out your old 2009 model. Just slot it into a special cradle that allows it access new 4G or 5G services and bandwidth as they arrive, including home security images from your web cam.
 Nano Technology behind Future Mobiles
Launched alongside The Museum of Modern Art “Design and The Elastic Mind” exhibition, the Morph concept device is a bridge between highly advanced technologies and their potential benefits to end-users. This device concept showcases some revolutionary leaps being explored by Nokia Research Center (NRC) in collaboration with the Cambridge Nanoscience Centre (United Kingdom) – nanoscale technologies that will potentially create a world of radically different devices that open up an entirely new spectrum of possibilities.
Morph concept technologies might create fantastic opportunities for mobile devices:
·   Newly-enabled flexible and transparent materials blend more seamlessly with the way we live
·   Devices become self-cleaning and self-preserving
·   Transparent electronics offering an entirely new aesthetic dimension
·   Built-in solar absorption might charge a device, whilst batteries become smaller, longer lasting and faster to charge
·   Integrated sensors might allow us to learn more about the environment around us, empowering us to make better choices  
In addition to the advances above, the integrated electronics shown in the Morph concept could cost less and include more functionality in a much smaller space, even as interfaces are simplified and usability is enhanced. All of these new capabilities will unleash new applications and services that will allow us to communicate and interact in unprecedented ways.

Flexible & Changing Design

Nanotechnology enables materials and components that are flexible, stretchable, transparent and remarkably strong. Fibril proteins are woven into a three dimensional mesh that reinforces thin elastic structures. Using the same principle behind spider silk, this elasticity enables the device to literally change shapes and configure itself to adapt to the task at hand.
A folded design would fit easily in a pocket and could lend itself ergonomically to being used as a traditional handset. An unfolded larger design could display more detailed information, and incorporate input devices such as keyboards and touch pads.
Even integrated electronics, from interconnects to sensors, could share these flexible properties. Further, utilization of biodegradable materials might make production and recycling of devices easier and ecologically friendly.

Self-Cleaning
Nanotechnology also can be leveraged to create self-cleaning surfaces on mobile devices, ultimately reducing corrosion, wear and improving longevity. Nanostructured surfaces, such as “Nanoflowers” naturally repel water, dirt, and even fingerprints utilizing effects also seen in natural systems.
Advanced Power Sources
Nanotechnology holds out the possibility that the surface of a device will become a natural source of energy via a covering of “Nanograss” structures that harvest solar power. At the same time new high energy density storage materials allow batteries to become smaller and thinner, while also quicker to recharge and able to endure more charging cycles. 
Sensing The Environment

Nanosensors would empower users to examine the environment around them in completely new ways, from analyzing air pollution, to gaining insight into bio-chemical traces and processes. New capabilities might be as complex as helping us monitor evolving conditions in the quality of our surroundings, or as simple as knowing if the fruit we are about to enjoy should be washed before we eat it. Our ability to tune into our environment in these ways can help us make key decisions that guide our daily actions and ultimately can enhance our health.
Article by Amit Sabharwal

Stumble
Delicious
Technorati
Twitter
Facebook

0 Comments:

Post a Comment

Translate

The Flint on Facebook
 

.

Your Ad Here

Flint World Copyright © 2010 LKart Theme is Designed by Lasantha